

CENTRO UNIVERSITÁRIO DE BRASÍLIA - UniCEUB FACULDADE DE TECNOLOGIA E CIÊNCIAS SOCIAIS APLICADAS - FATECS

PROGRAMA DE INICIAÇÃO CIENTÍFICA

CARLOS EDUARDO COSTA DE FARIA

ANÁLISE DE VIBRAÇÕES EM UMA TORRE DE ENERGIA EÓLICA

BRASÍLIA 2018

CARLOS EDUARDO COSTA DE FARIA

ANÁLISE DE VIBRAÇÕES EM UMA TORRE DE ENERGIA EÓLICA

Relatório final de pesquisa de Iniciação Científica apresentado à Assessoria de Pós-Graduação e Pesquisa pela Faculdade de Tecnologia e Ciências Sociais aplicadas - FATECS

Orientação: Prof. Dr. Marcos Rafael Guassi

BRASÍLIA 2018

Dedicatória

Dedico esse trabalho a minha família, sem vocês nada disso seria possível.

Agradecimentos

Primeiramente gostaria de agradecer a minha família, pelo amor, incentivo e apoio incondicional.

Ao meu Prof. Dr. Marcos Rafael, por me acompanhar ao longo dessa pesquisa, agradeço a paciência, dedicação e os seus sábios ensinamentos. Aos meus amigos e colegas, que me deram suporte nessa jornada.

Agradeço ao UniCEUB pelo ambiente agradável, por todos recursos disponibilizados e que viabilizaram essa pesquisa e pela prestatividade de todos.

ANÁLISE DE VIBRAÇÕES EM UMA TORRE DE ENERGIA EÓLICA

Carlos Eduardo Costa de Faria - UniCEUB, PIC Instituional, aluno bolsista eduardo.meia4@sempreceub.com

Marcos Rafael Guassi - UniCEUB, professor orientador

marcos.guassi@ceub.edu.br

Um dos grandes problemas da atualidade é a questão energética. A energia eólica tem se destacado bastante por ser uma alternativa sustentável a médio e longo prazo, e por se tratar de uma fonte de energia renovável, limpa e inesgotável.

As torres que sustentam o aerogerador são flexíveis, esbeltas e expostas a vibrações excessivas, provenientes da interação entre o vento e a estrutura. Essas forças podem induzir vibrações, que caso se aproximarem da frequência natural da estrutura, aumentam sua amplitude de oscilação, acarretando em danos à mesma, diminuindo seu tempo de vida útil e colocando-a risco. Visando amenizar essas vibrações geradas por forças externas, emprega-se amplamente um dispositivo de controle, o amortecedor de massa sintonizada (AMS). Esse dispositivo consiste essencialmente de um sistema massa-mola-amortecedor, conectado a estrutura da torre e sintonizado na sua frequência natural, com o objetivo de evitar a ressonância.

O modelo da torre proposto neste trabalho foi modelado no software ANSYS R19.0, como um elemento de viga vertical e com a utilização de um elemento de massa concentrada no topo da torre para representar a nacele do aerogerador. Adotou-se um carregamento harmônico, simulando o efeito do vento, de maneira simplificada, aplicado no topo da estrutura. Junto ao nacele se localiza o AMS.

Foram realizadas as análises estática, modal e transiente, além de verificar-se a eficiência do AMS. Os resultados obtidos reforçam o âmbito do controle de vibrações através do controle passivo das vibrações estruturais.

Palavras-Chave: Dinâmica das estruturas, vibrações, amortecedor de massa sintonizada, torre eólica, controle estrutural

Sumário

1	Introdução				
	1.1	Amortecedor de massa sintonizada	2		
	1.2	Objetivos	5		
2	Fun	damentação teórica	6		
3	Mete	odologia	8		
	3.1	Modelagem física e geométrica	8		
	3.2	Software ANSYS	8		
	3.3	Modelagem computacional	9		
	3.4	Análise modal	9		
	3.5	Análise transiente	9		
	3.6	Parâmetros ótimos do AMS	9		
4	Res	ultados e discussões	11		
	4.1	Análise Modal	11		
	4.2	Cálculo dos parâmetros ótimos do amortecedor de massa sintonizada .	13		
	4.3	Análise transiente	14		
Re	Referências Bibliográficas				

Capítulo 1

Introdução

Devido ao aumento da demanda energética e com a crescente preocupação com a redução da emissão de gases poluentes na atmosfera, o mundo tem buscado cada vez mais o desenvolvimento de fontes de geração de energia limpa. Destaca-se dentre elas, a eólica.

A exploração da energia do vento revela-se uma fonte de energia promissora, mas essa não é uma ideia recente, o registro de moinhos de vento para bombeamento de água e moagem de cereais, data de mais de 3000 anos [1].

Na Europa, a utilização e o desenvolvimento dos moinhos de ventos aumentou continuamente entre os séculos XII e XIV. No final do século XIV um moinho típico europeu possuía um rotor de 25 metros de diâmetro e altura de aproximadamente 30 metros [2].

Um turbina eólica ou aerogerador, é um equipamento que capta a energia cinética do vento, convertendo-a em energia elétrica. São classificados pelo modo como as pás interagem com o vento ou pela disposição do eixo da turbina.

Atualmente os modelos de aerogeradores que mais são empregados são: o de eixo vertical (VAWT – Vertical Axis Wind Turbine) e o de eixo horizontal (HAWT – Horizontal Axis Wind Turbine), visto na figura 1.1. Sendo o mais usual o uso são dos aerogeradores as de eixo horizontal (HAWT),por apresentarem um maior proveito da energia do vento.

Os principais componentes de um aerogerador de eixo horizontal:

- Anemômetro: afere a direção, a intensidade e a velocidade do vento;
- Catavento: mede a direção do vento, é responsável por transmitir ao sistema de controlo a posição instantânea o vento, permitindo ao aerogerador manter-se orientado ao vento de forma a otimizar a energia cinética do vento, aumentando a potência produzida;
- Gearbox (caixa multiplicadora): tem a função de transformar as rotações que as pás transmitem ao eixo de baixa velocidade, entregando ao eixo de alta velocidade as rotações que o gerador precisa para funcionar;
- Gerador: converte a energia mecânica em energia elétrica;
- Nacele: compartimento situado no topo da torre constituída por: chassis, caixa multiplicadora (Gearbox), sistema de controle eletrônico, sistema hidráulico e sistema yaw;

Figura 1.1: Torre eólica com aerogerador de eixo horizontal do tipo HAWT. FONTE: *https://fabricioengmec.blogspot.com/2017/07/historia-da-energia-eolica-e-suas.html*

- Pás: São produzidas a partir de materiais como a fibra de vidro e o plástico. Visam captar o vento e direcionar sua potência ao centro do rotor;
- Rotor: elemento de fixação das pás que transmite o movimento de rotação para o eixo de movimento lento. Um de seus principais componentes é o sistema hidráulico que permite o movimento das pás em distintas posições para otimizar a força do vento ou parar a turbina por completo;
- Torre: elemento que sustenta a nacele e o rotor

As turbinas eólicas com rotor de eixo vertical são normalmente mais caras e apresentam desempenho inferior que os de eixo horizontal, em razão do gerador não girar segundo a direção do vento, apenas o rotor se movimenta enquanto o gerador fica parado. São exemplos de rotores de eixo vertical os rotores do tipo Savonius, da figura 1.2 e os rotores do tipo Darrieus, da figura 1.3.

De acordo com Dellezzopolles [3](2011), as torres podem ser das seguintes formas: tubular cilíndrica, cônica ou treliçada, como a mostrada na figura 1.4 - utilizando concreto ou aço na composição de sua estrutura.

As torres tubulares, como a da figura 1.1, correspondem ao modelo de estrutura mais empregado na construção de turbinas eólicas [1, 2, 3, 4]. Isso deve-se ao fato de apresentarem melhor eficácia em relação a sua rigidez, pois possuem pontos discretos de ligação entre os módulos que favorecem a sua montagem a grandes alturas, e consequentemente, a segurança dos montadores.

1.1 Amortecedor de massa sintonizada

Torre eólicas são estruturas altas, esbeltas e encontram-se constantemente submetidas a esforços de vento - estes induzem vibrações na estrutura. Essas solicitações podem causar à estrutura efeitos superiores aos calculados daqueles previstos na análise de modelo estático. Logo, é necessária a realização de uma análise dinâmica,

Figura 1.2: Torre eólica com aerogerador de eixo vertical do tipo Savonius. FONTE: *https://pixabay.com/pt/rotor-savonius-vertical-3084781/*

Figura 1.3: Torre eólica com aerogerador de eixo vertical do tipo Darrieus. FONTE: https://en.wind-turbine-models.com/turbines/93-dornier-darrieus-55?picture=LPQ8tvaHYVd

Figura 1.4: Torre eólica com aerogerador de eixo horizontal com torre treliçada. FONTE: http://www.brametal.com.br/produto/3/

que leve em consideração a variação temporal desses efeitos. A realização desse tipo de análise possibilita determinar os valores de deslocamentos, tensões e acelerações da estrutura, que não são detectados em uma análise estritamente estática.

Casos como o de "Tacoma Narrows Brigde" - que em virtude do efeito do vento, entrou em ressonância e ruiu, em 1940 - fomentaram inúmeros estudos na área de dinâmica das estruturas nas últimas décadas.

Segundo Valência [5], um dos dispositivos mais adotados por engenheiros civis para se combater esse tipo de dano é o amortecedor de massa sintonizada (AMS). Ele consiste em um sistema massa, mola e amortecedor fixado a um sistema livre para vibrar, visando reduzir a resposta dinâmica da estrutura. Vigas, torres, passarelas de pedestres, pontes e edifícios altos são estruturas que vêm se beneficiando com a aplicação do AMS para aprimorar a sua performance.

A frequência do amortecedor é sintonizada para uma frequência particular da estrutura, pois, uma vez que a estrutura for excitada, o amortecedor irá vibrar fora de fase com o movimento da estrutura. Esse método de controle estrutural tem como principal finalidade de diminuir a amplitude do pico de ressonância [6](Alves, 2015).

Chen e Huang [7] estabelecem que para o AMS ter uma boa aplicabilidade, a razão μ entre a massa do amortecedor e a massa total - deve estar entre 5% e 15%. No presente trabalho adotou-se os valor de 10%. Com esses valores estabelecidos calculou-se os parâmetros ótimos.

Den Hartog [8] deduziu os parâmetros ótimos para uma boa aplicabilidade dos amortecedores de massa sintonizada, estas deduções assumem que o sistema principal tenha fator de amortecimento nulo, ou seja, apenas o sistema de amortecimento seria o responsável pelo controle de vibrações da estrutura. A sua técnica de otimização foi desenvolvida com o objetivo de minimizar o deslocamento da estrutura, sob ação de um carregamento harmônico.

Este trabalho visa compreender a eficácia do conjunto estrutura-amortecedor, os

parâmetros de amortecimento necessários para se obter melhor controle dos deslocamentos devido às cargas dinâmicas, dessa forma, podendo-se determinar os parâmetros ideais de um projeto.

1.2 Objetivos

O presente trabalho tem como objetivo principal analisar os deslocamentos de uma torre eólica, com e sem a presença de um amortecedor de massa sintonizada, verificando assim numericamente a eficácia do dispositivo de controle estrutural neste tipo de estrutura. Para alcançar esse objetivo, serão realizadas etapas intermediárias, com o intuito de presentar um modelo capaz de simular o comportamento de uma torre eólica; analisar deformações da estrutura através da modelagem no pacote de elementos finitos do ANSYS; e comparar os deslocamentos com e sem a presença do AMS, adotando diferentes valores para a frequência da excitação externa.

Capítulo 2

Fundamentação teórica

Beneveli [9] estudou o uso do controle estrutural na proteção de estruturas submetidas a carregamentos dinâmicos buscando evitar níveis de vibração que possam gerar desconforto, comprometer a segurança e integridade da edificação. Adotou como controle estrutural o amortecedor de massa, entre eles o AMS. Concluindo que em mecanismos de controle passivo, o AMS tem uma grande influência na resposta do sistema e que em muitos casos houve redução da amplitude de oscilação.

Valência [5] investigou o controle de oscilações em vigas metálicas com distintas condições de vínculos empregando amortecedores de massa sintonizada. Utilizou quatro modelos de viga: biapoiada, engastada e apoiada, simplesmente apoiada com dois balanços e uma viga Gerber com balanços. Submeteu estas estruturas sob dois tipos de carregamento: harmônico e aleatório, almejando definir numericamente a eficácia de um sistema de controle passivo (AMS e AMSM) na redução de vibrações excessivas e no controle da reação dinâmica da estrutura. Obteve os resultados numéricos com o auxílio do software ANSYS e inferiu que o emprego do controle estrutural reduz significativamente os deslocamentos.

Sirqueira [10], elaborou um modelo de elementos finitos no software ANSYS simulando o comportamento da torre eólica submetida ao carregamento promovido pelo vento nas pás da hélice. Determinou as frequências naturais, os modos de vibração bem como uma análise harmônica e transiente para investigar a reação dinâmica da estrutura no domínio do tempo. Concluiu que a realização de uma análise exclusivamente estática pode ocasionar no mau dimensionamento da torre e, consequentemente, em prováveis acidentes. Desta forma, constatou a relevância do estudo da parcela dinâmica.

Ávila e Pereira [11], utilizaram o amortecedor de massa sintonizada (AMS) sintonizado na frequência natural da estrutura de uma torre eólica buscando reduzir vibrações. Modelaram a estrutura como um elemento de barra com uma massa concentrada no topo da torre simulando a nacele. Utilizaram o pacote de elementos finitos ANSYS para fazer as análises modal e transiente. Utilizaram de um carregamento harmônico, comparando os deslocamentos com e sem do amortecedor de massa sintonizada. Comprovaram a eficiência do uso de controle estrutural neste tipo de estrutura.

Dellezzopolles Junior [3] fez uma análise dinâmica de torres de energia eólica. Essas torres servem de suporte para aerogeradores, os quais geram carregamentos dinâmicos na estrutura. Concluiu que a análise dinâmica é essencial para se obter resultados confiáveis a respeito do comportamento da estrutura.

Oliveira [1], buscou analisar o comportamento dinâmico de uma torre de gera-

dor eólico, visando obter um modelo numérico que simulasse melhor o modelo real. Utilizou-se do modelo de elementos finitos para realizar as análises modal e estudar as respostas dinâmicas da estrutura. Comparou os resultados experimentais e numéricos, concluindo que modelo de casca com sapata, ajustado aos resultados do ensaio, é a melhor representação da estrutura real, obtendo valores de frequências próprias próximos aos alcançados no ensaio dinâmico.

Alves [6], pesquisou sobre o controle de vibrações em um edifício de 36 pavimentos aplicando amortecedores de massa sintonizados (AMS) submetidos a cargas dinâmicas (vento ou terremoto). O vento foi descrito como um carregamento harmônico bem como utilizando o método do vento sintético. No seu trabalho os edifícios são modelados como sistemas do tipo shear-building de n graus de liberdade e, utiliza um amortecedor do tipo AMS – como controle estrutural - e sistema de isolamento de base. Concluiu que ao se alterar os parâmetros do AMS ótimo e o edifício é sujeito a um carregamento harmônico, a redução das amplitudes de oscilação são menores que as amplitudes com o AMS ótimo evidenciando a sua eficácia

Pereira [2], propôs um modelo de torre que foi modelado com elemento de viga sem as pás do rotor e a utilização de um elemento de massa concentrada no topo da torre atuando como a nacele do aerogerador. Desempenhou análises estruturais estática, modal e transiente, assim como sistemas de otimização em cada um desses regimes. Como dispositivo de controle estrutural utilizou-se um pêndulo, fixado a estrutura da torre e sintonizado em uma frequência de interesse, ambicionando fazer o dispositivo vibrar fora de fase com o movimento gerado pela interação vento-estrutura, e assim transmitir a energia vibratória para o próprio pêndulo.

Capítulo 3

Metodologia

3.1 Modelagem física e geométrica

A torre apresenta uma estrutura tubular cilíndrica, em aço, com espessura constante em toda a estrutura. As propriedades da torre podem ser verificadas na tabela 3.1:

Propriedades da torre	Valor
Altura (m)	80
Diâmetro da torre (m)	4
Espessura (m)	0,02
Massa do topo da torre (kg)	19876
Massa específica (kg/m ³)	7850
Módulo de Elasticidade (N/m ²)	2,1 · 10 ¹¹

Tabela 3.1: Propriedades da torre modelada

3.2 Software ANSYS

A elaboração de uma modelagem estrutural, via elementos finitos ANSYS, geralmente é composta por três etapas:

- Pré-processamento: Fase na qual modela-se toda a estrutura, especificando os tipos de elemento, propriedades físicas e geométricas do material. A determinação do tipo de análise, a discretização da estrutura e a criação da malha, acontecem nessa etapa.
- II. Processamento: Nesta parte especificam-se as condições de contorno, o carregamento e sua aplicação na estrutura investigada.
- III. Pós-processamento: Compreende na obtenção das soluções. Tensões, aceleração da estrutura, deslocamentos nodais, deformações e frequências naturais, são exemplos que o software, proporciona, analisar.

3.3 Modelagem computacional

A torre foi modelada, como um elemento de viga com uma massa concentrada no topo para simular a nacele, no pacote de elementos finitos ANSYS.

Almejou-se, ao modelar a estrutura, empregar elementos que apresentassem mais apropriadamente o comportamento da torre e suas condições de apoio.

Utilizou-se dos elementos: BEAM4 e BEAM188, para simular a estrutura da torre; MASS21, para simular a nacele.

A estrutura foi discretizada em 401 nós e 400 elementos finitos, cada elemento tem 20 centímetros de comprimento.

3.4 Análise modal

O ANSYS R19.0 proporciona os métodos Block Lanczos, Damped, PCG Lanczos, QR Damped, Supernode, Subspace e Unsymemetric como mecanismos de extração dos modos de vibração da estrutura. Utilizou-se do Block Lanczos em virtude da rápida convergência de soluções obtidas.

A partir das frequências naturais ou modos de vibração da estrutura encontradas, modelou-se as propriedades do AMS e o carregamento harmônico.

3.5 Análise transiente

Os modos "Full" e o "Mode superposition" são os métodos disponibilizados pelo ANSYS R19.0 para desempenhar a análise transiente. Utilizou-se do método "Full" devido a sua simples aplicação em comparação ao outro modo.

Na análise transiente, é definida a reação dinâmica da estrutura por efeito de carregamentos harmônicos. Considerou-se uma carga senoidal

$$F(t) = Psen(\omega t + \phi), \tag{3.1}$$

com P = 1000KN e o ângulo de fase ϕ sendo nulo, variando ao longo do tempo a fim de simular o esforço gerado pelo vento atuando na estrutura. A excitação dinâmica, aplicada na massa concentrada no topo da torre, é constituída por um harmônico ressonante. A frequência de excitação foi calculada igual à frequência natural da torre.

Por meio do método de Newmark, obteve-se a solução das equações de movimento da estrutura proposta. Esse método foi utilizado em virtude do pacote ANSYS utilizado na modelagem e solução dos problemas propostos utilizar-se desse método de integração direta e implícita.

3.6 Parâmetros ótimos do AMS

Através da razão μ entre a massa do amortecedor e a massa total, adotou-se o valores de 10%. Com este valor definido, calculou-se os parâmetros ótimos do amortecedor.

Den Hartog (1956) [8] definiu os parâmetros ótimos de amortecimento, estes são dados pelas relações:

$$\alpha_o = \frac{1}{1+\mu} \tag{3.2}$$

$$\epsilon_o = \sqrt{\frac{3\mu}{8(1+\mu)^3}} \tag{3.3}$$

$$\omega_a = \alpha_o \omega \tag{3.4}$$

Utilizou-se do Fortran 95 para o cálculo das constantes de rigidez e dos parâmetros ótimos de amortecimento do AMS.

O amortecedor de massa sintonizada (AMS) foi modelado utilizando-se dos elementos COMBIN14 e MASS21, para simular as massas, as molas e os amortecedores do dispositivo de controle.

Capítulo 4

Resultados e discussões

Com base na tabela 3.1, calculou-se as seguintes propriedades da torre eólica: momento de inércia I em torno do eixo z:

$$I_{zz} = \pi \frac{D^4 - d^4}{64} = 0,494143m^4,$$
(4.1)

sendo D o diâmetro externo e d o diâmetro interno da torre. A área da seção transversal:

$$A_s = \frac{\pi}{4}(D^2 - d^2) = 0,249876m^2$$
(4.2)

O volume da torre:

$$V_{torre} = A_s H = 19,99008m^3 \tag{4.3}$$

A massa da torre:

$$M_{torre} = \rho_{aco} V_{torre} = 156.922, 128kg$$
(4.4)

A massa total da estrutura:

$$M_{total} = M_{torre} + M_{topo} = 19.876kg \tag{4.5}$$

Definidos esses parâmetros, modelou-se a torre no pacote de elementos finitos ANSYS R19.0.

4.1 Análise Modal

Por meio do bloco Lanczos, presente no pacote de elementos finitos ANSYS, realizou-se análise modal. Assim, o programa determinou as frequências naturais e os modos de vibração da torre eólica.

Esses parâmetros correspondem aos modos de vibração mostrados nas figuras abaixo, do primeiro ao oitavo modo.

Figura 4.1: Modos de vidração da torre eólica com as frequências (a) 1° modo, f=0,51533Hz, (b) 2° modo, f=0,63315Hz, (c) 3° modo, f=3,3429Hz, (d) 4° modo, f=3,8674Hz.

Figura 4.2: Modos de vidração da torre eólica com as frequências (a) 5° modo, f=9,3219Hz, (b) 6° modo, f=10,024Hz, (c) 7° modo, f=10,422Hz, (d) 8° modo, f=16,163Hz.

	BEAM188		
1	0,51533		
2	0,63315		
3	3,34290		
4	3,86740		
5	9,3219		
6	10,024		
7	10,422		
8	16,163		

Tabela 4.1: Frequências naturais da torre eólica, em Hz.

4.2 Cálculo dos parâmetros ótimos do amortecedor de massa sintonizada

Utilizando-se dos valores obtidos na análise modal, os parâmetros ótimos definidos por Den Hartog [8] e por meio das seguintes manipulações mostradas abaixo, obteve-se as equações para determinar a rigidez e o amortecimento do amortecedor de massa sintonizada:

$$\omega_a = \sqrt{\frac{K_a}{M_a}}.$$
(4.6)

Substituindo a equação 3.2 na equação 4.6, obtém-se a expressão

$$\frac{1}{1+\mu}\omega = \sqrt{\frac{K_a}{M_a}} \tag{4.7}$$

Manipulando-se essa equação, chega-se a

$$K_a = \left[\left(\frac{1}{1+\mu} \right) \omega \right]^2.$$
(4.8)

Sabe-se que

$$C_a = 2\epsilon_o M_a \omega_a. \tag{4.9}$$

Com a substituição das equações 3.3 e 4.6, obtém-se a expressão

$$C_a = 2\sqrt{\frac{3\mu}{8(1+\mu)^3}}(\mu_{Mtot})\sqrt{\frac{K_a}{M_a}}$$
(4.10)

Utilizando μ como 10%, nas equações 3.2, 3.3, determinam-se os valores

$$\alpha_{otimo} = 0,9090909090909090 \tag{4.11}$$

$$\epsilon_{otimo} = 0,16785203315363553 \tag{4.12}$$

$$M_a = 17.679, 8128kg \tag{4.13}$$

Inserindo esses valores nas equações 3.4, 4.10 chega-se a

$$\omega_a = 2,943558077 rad/s \tag{4.14}$$

$$K_a = 154.134, 64435562171N/m \tag{4.15}$$

Com todos esses valores, calcula-se o valor de Ca na equação 4.10

$$C_a = 17.524.497155373152N \cdot s/m \tag{4.16}$$

4.3 Análise transiente

Para averiguar a eficácia do AMS, modelado anteriormente, analisou-se a estrutura sujeita a um carregamento do vento harmônico, já que os parâmetros ótimos do amortecedor, estabelecidos por Den Hartog [8], são especificados baseando-se deste pressuposto da carga. Análises similares foram realizadas por Shzu et al [12].

Esta excitação dinâmica imposta à estrutura foi modelada de modo a representar o efeito da ação da força do vento atuando na torre do aerogerador. Nas análises transientes, o tempo total de análise foi de 20 segundos e um passo de tempo de 0,1 segundos.

A cor vermelha e azul, nos gráficos a seguir, indica o deslocamento sem e com a presença do amortecedor de massa sintonizada, respectivamente. A figura 4.3 re-

Figura 4.3: Deslocamento em função do tempo no primeiro modo de vibração (a esquerda) e no segundo modo de vibração (a direita).

presenta o deslocamento do topo da torre quando $\omega_f = 0,51533$ Hz. Nota-se que a presença do controle estrutural ameniza os deslocamentos laterais da estrutura. Observando a figura 4.3, a direita, percebe-se que a estrutura entra em ressonância,

quando $\omega_f = 0,63315$ Hz. Com a presença do AMS os deslocamentos da estrutura diminuem, evidenciando assim a sua principal finalidade que é de diminuir a amplitude do pico de ressonância. Esse era o principal efeito esperado no sistema

Figura 4.4: Deslocamento em função do tempo no terceiro modo de vibração (a esquerda) e no quarto modo de vibração (a direita)

A figura 4.4 da esquerda simula o deslocamento do topo da torre quando ω_f = 3,3429 Hz. Verifica-se que a presença do controle estrutural reduz os deslocamentos da torre, sendo que estes são muito mais baixos quando comparados ao primeiro e segundo modos de vibração. Já a figura 4.4 da direita descreve o deslocamento do topo da torre quando ω_f = 3,8674 Hz. Constata-se que a amplitude de oscilação diminui com a presença do controle estrutural.

Considerações finais

A torre foi modelada como elemento de viga com uma massa concentrada no topo, no pacote de elementos finitos ANSYS R19.0. Foram realizadas análises modais e transientes.

Na análise modal obteve-se as frequências de vibração da estrutura. Com estes valores, modelou-se o carregamento harmônico e a frequência natural do amortecedor de massa sintonizada.

Com base nos parâmetros ótimos do AMS definidos por Den Hartog [8], modelouse o dispositivo de controle estrutural.

Quando aplicada a carga devida a um vento harmónico e sintonizado com a frequência natural da estrutura, foi possível observar que o AMS reduz significativamente as amplitudes de vibração, visto que o amortecedor foi sintonizado à frequência do vento. Verificando assim numericamente a eficácia do dispositivo de controle estrutural AMS em uma torre eólica.

Os resultados obtidos estão de acordo com referências da área, mas alguns pontos mostram resultados diferentes, como esperado, devido a diferenças na geometria e na modelagem do amortecedor de massa sintonizada no pacote de elementos finitos ANSYS.

Referências Bibliográficas

- L. F. M. P. OLIVEIRA. Análise do comportamento dinâmico de torres de geradores eólicos. Master's thesis, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2012.
- [2] W. M. PEREIRA. Influência do controle estrutural na otimização de torres de sustentação de aerogeradores. Master's thesis, Universidade de Brasília, Brasília, 2015.
- [3] C. F. DELLEZZOPOLLES. Análise dinâmica de torre de energia eólica. Master's thesis, Universidade de Brasília, Brasília, 2011.
- [4] J. C. MENDES, T. F.; MENEZES. Estudo de sensibilidade e dimensionamento estrutural de torres tubulares para geradores eólicos. VI Congresso Nacional de Engenharia Mecânica, 2010.
- [5] L. A. L. VALENCIA. Controle de vibrações em vigas metálicas com distintas configurações de apoio utilizando amortecedores de massa sintonizados. Master's thesis, Universidade de Brasília, Brasília, 2007.
- [6] L. S. ALVES. Controle de vibrações em edifícios altos sujeitos a vento ou terremoto. UFG, 2015.
- [7] Y. H. CHEN, Y. H.; HUANG. Timoshenko beam with tuned mass dampers and its design curves. *Journal of Sound and Vibration*, 2004.
- [8] P. J. DEN HARTOG. *Mechanical vibrations*. McGraw-Hill, Nova York, E.U.A, 3 edition, 1956.
- [9] S. M. A. BENEVELI. Controle híbrido para atenuação de vibrações em edifícios. PhD thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2002.
- [10] A. S. SIRQUEIRA. Comportamento estrutural de torres de aço para suporte de turbinas eólicas. Master's thesis, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2008.
- [11] S. M.; W. M. ÁVILA. Controle de vibrações em torres eólicas submetidas à ação de cargas harmônicas utilizando amortecedor de massa sintonizado na forma de pêndulo. 10^a Conferência Brasileira de Dinâmica, Controle e Aplicações DICON, 2011.
- [12] M. A. M. et al SHZU. Estudo de sensibilidade e dimensionamento estrutural de torres tubulares para geradores eólicos. VI Congresso Nacional de Engenharia Mecânica, 2010.